installs
The configuration commands for a working environment are:
2025
The editor and language options available are:
VS code
Python, Julia, R, LaTex, Quarto markdown, Fortran
Jupyter Lab
Python, Julia, R, Octave, gnu plot, Quarto markdown
Octave
Octave
R Studio
R, Quarto markdown
wxMaxima
Maxima
These commands were entered on an Intel Mac running MacOS Ventura 13.7.3 but will be applicable to other Apple Intel models and OS versions
from code.visualstudio.com download intel chip .zip Move the executable from Downloads to Applications Run Visual Studio Code from Applications (version 1.96.4) in Jan 2025
from julialang.org download macOS x86 (Intel or Rosetta) .dmg In Downloads execute the .dmg file (julia-1.11.3.dmg in Jan 2025) Drag Julia to the Applications Folder Run Julia-1.11 from Applications
install homebrew package manager by copying command below from Homebrew web page and executing in terminal
/bin/bash -c “$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)”
Copy and paste the 3 lines below as instructed by homebrew install
echo ‘eval “$(/opt/homebrew/bin/brew shellenv)”’ >> /Users/YOURUSER/.zprofile
eval “$(/opt/homebrew/bin/brew shellenv)”
brew install fortran-language-server
In vscode added Python, Jupyter, Julia, Fortran Xavier Hahn, Fortran IntelliSense Chris Hansen, Fortran Breakpoint Support ekibun, LaTeX Workshop James Yu, R REditor support, Quarto extensions
From quarto.org download and install the program to install the Quarto CLI quarto-1.6.40-macos.pkg
Run the Quarto package in Downloads
In VS Code for the relevant extension settings add the path to the language servers:
Julia: Executable Path /Applications/Julia-1.11/Contents/Resources/julia/bin/julia
Fortran-ls: Executable Path /usr/local/bin/fortls
Quarto: Path /usr/local/bin/quarto
Close and restart VS Code
To control a reproducible environment load a virtual environment manager.
From https://github.com/conda-forge/miniforge downloaded Miniforge3-MacOSX-x86_64.sh
In Terminal cd Downloads
bash Miniforge3-MacOSX-x86_64.sh Enter yes Enter yes
Close terminal and re enter
conda config - -set auto_activate_base false
Close terminal and re enter
create an environment for each project needing python version / dependency control replacing MYPROJECT
conda create -n MYPROJECT python=3.13.3
conda activate MYPROJECT
which python shows /Users/YOURUSER/miniforge3/envs/MYPROJECT/bin/python
python -V shows Python 3.13.3
which pip shows /Users/YOURUSER/miniforge3/envs/MYPROJECT/bin/pip
Ensure your terminal indicates that you are in the activated environment (MYPROJECT) appears on command line prompt, Then:
conda install -c conda-forge jupyterlab
Install python packages you will use:
conda install -c conda-forge numpy
conda install -c conda-forge sympy
conda install -c conda-forge matplotlib
conda install -c conda-forge pandas itables
conda install -c conda-forge plotly
conda install -c conda-forge bokeh
conda install -c conda-forge scipy
conda install -c conda-forge seaborn
conda install -c conda-forge ipympl
conda install -c conda-forge watermark
conda install -c conda-forge lfortran
conda install -c conda-forge astropy plasmapy
pip install octave-kernel gnuplot-kernel
brew install r
Enter next command as a capital
R
install.packages(‘IRkernel’)
install.packages(‘languageserver’)
install.packages(‘plotly’)
choose a mirror
IRkernel::installspec()
quit()
From posit.co download RStudiio Desktop for MacOS
Execute the .dmg in Downloads
Drag RStudio to Applications
brew install node
Run Julia in /Applications
]
add IJulia
Delete Key
exit()
python -m gnuplot_kernel install – -user
brew install octave
brew install scilab
brew install maxima wxmaxima
mkdir ~/.maxima vi ~/.maxima/maxima-init.mac add the 2 commands noted by brew gnuplot_command:“/usr/local/bin/gnuplot”$ draw_command:“/usr/local/bin/gnuplot”$
octave –gui to run Octave
jupyter-lab to run jupyter
From App Store install Geogebra Classic
The editor and language options available are:
VS code
Python, Julia, R, LaTex, Quarto markdown, Fortran
Jupyter Lab
Python, Julia, R, Octave, gnu plot, Quarto markdown
Octave
Octave
R Studio
R, Quarto markdown
wxMaxima
Maxima
These commands were entered on an Appe Silicon M4 Mac Mini running MacOS Sequoia 15.3 but will be applicable to other Apple Silicon models and OS versions
from code.visualstudio.com download Apple Silicon .zip Move the executable from Downloads to Applications Run Visual Studio Code from Applications (version 1.96.4) in Jan 2025
from julialang.org download macOS (Apple Silicon) .dmg In Downloads execute the .dmg file (julia-1.11.3.dmg in Jan 2025) Drag Julia to the Applications Folder Run Julia-1.11 from Applications
install homebrew package manager by copying command below from Homebrew web page and executing in terminal
/bin/bash -c “$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)”
Copy and paste the 3 lines below as instructed by homebrew install
echo ‘eval “$(/opt/homebrew/bin/brew shellenv)”’ >> /Users/YOURUSER/.zprofile
eval “$(/opt/homebrew/bin/brew shellenv)”
brew install gcc
brew install fortran-language-server
In vscode added Python, Jupyter, Julia, Fortran Xavier Hahn, Fortran IntelliSense Chris Hansen, Fortran Breakpoint Support ekibun, LaTeX Workshop James Yu, R REditor support, Quarto extensions
From quarto.org download and install the program to install the Quarto CLI quarto-1.6.40-macos.pkg
Run the Quarto package in Downloads
In VS Code for the relevant extension settings add the path to the language servers:
Julia: Executable Path /Applications/Julia-1.11/Contents/Resources/julia/bin/julia
Fortran-ls: Executable Path /usr/local/bin/fortls
Quarto: Path /usr/local/bin/quarto
Close and restart VS Code
To control a reproducible environment load a virtual environment manager.
From https://github.com/conda-forge/miniforge downloaded Miniforge3-MacOSX-arm64.sh
In Terminal cd Downloads
bash Miniforge3-MacOSX-arm64.sh Enter yes Enter yes
Close terminal and re enter
conda config - -set auto_activate_base false
Close terminal and re enter
create an environment for each project needing python version / dependency control replacing MYPROJECT
conda create -n MYPROJECT python=3.13.3
conda activate MYPROJECT
which python shows /Users/YOURUSER/miniforge3/envs/MYPROJECT/bin/python
python -V shows Python 3.13.3
which pip shows /Users/YOURUSER/miniforge3/envs/MYPROJECT/bin/pip
Ensure your terminal indicates that you are in the activated environment (MYPROJECT) appears on command line prompt, Then:
conda install -c conda-forge jupyterlab
Install python packages you will use:
conda install -c conda-forge numpy
conda install -c conda-forge sympy
conda install -c conda-forge matplotlib
conda install -c conda-forge pandas itables
conda install -c conda-forge plotly
conda install -c conda-forge bokeh
conda install -c conda-forge scipy
conda install -c conda-forge seaborn
conda install -c conda-forge ipympl
conda install -c conda-forge watermark
conda install -c conda-forge lfortran
conda install -c conda-forge astropy plasmapy
pip install octave-kernel gnuplot-kernel
brew install r
Enter next command as a capital
R
install.packages(‘IRkernel’)
install.packages(‘languageserver’)
install.packages(‘plotly’)
choose a mirror
IRkernel::installspec()
quit()
From posit.co download RStudiio Desktop for MacOS
Execute the .dmg in Downloads
Drag RStudio to Applications
brew install node
Run Julia in /Applications
]
add IJulia
Delete Key
exit()
python -m gnuplot_kernel install – -user
brew install octave
brew install scilab
brew install maxima wxmaxima
mkdir ~/.maxima vi ~/.maxima/maxima-init.mac add the 2 commands noted by brew gnuplot_command:“/usr/local/bin/gnuplot”$ draw_command:“/usr/local/bin/gnuplot”$
octave –gui to run Octave
jupyter-lab to run jupyter
From App Store install Geogebra Classic
The editor and language options available are:
VS code
Python, Julia, R
Jupyter Lab
Python, Julia, R, Octave, gnu plot
Pluto notebook
Julia
Octave
Octave
These commands were entered on an M1 Mac running Ubuntu 23.10 in a Virtual Machine in Parallels but the commands should apply to other Ubuntu systems
uname -a shows 6.5.0-26
mkdir tmp
cd tmp
wget https://mirror.ctan.org/systems/texlive/tlnet/install-tl-unx.tar.gz
zcat install-tl-*
sudo perl ./install-tl –no-interaction
add to .bashrc
export MANPATH=”/usr/local/texlive/2022/texmf-dist/doc/man:$MANPATH”
export INFOPATH=”/usr/local/texlive/2022/texmf-dist/doc/info:$INFOPATH”
export PATH=”/usr/local/texlive/2022/bin/aarch64-linux:$PATH”
mkdir Developer
cd Developer
sudo apt update
From https://github.com/conda-forge/miniforge downloaded Miniforge3-Linux-aarch64 (x86 if not on ARM)
In terminal in Downaloads bash Miniforge3-Linux-aarch64.sh (x86 if not on arm)
Chose to Initialise miniforge3
Restart Terminal
Environment structure is u-ubuntu 31011 – python version
conda create -n u31011 python=3.10.11
conda activate u31011
which python shows /home/parallels/miniforge3/envs/u31011/bin/python (Note where yours is)
python -V shows Python 3.10.11
which pip shows /home/parallels/miniforge3/envs/u31011/bin/pip
conda install -c conda-forge jupyterlab
conda install -c conda-forge numpy
conda install -c conda-forge sympy
conda install -c conda-forge matplotlib
conda install -c conda-forge pandas,itables
conda install -c conda-forge plotly
conda install -c conda-forge bokeh
conda install -c conda-forge scipy
conda install -c conda-forge seaborn
conda install -c conda-forge ipympl
conda install -c conda-forge watermark
conda install -c conda-forge stochastic
conda install -c conda-forge lfortran
conda install -c conda-forge astropy plasmapy
conda install -c conda-forge r-base
From julialang.org/downloads downloaded 64bit AArch64 of v1.10.2
cd Downloads
gunzip julia-1.10.2-rc1-linux-aarch64.tar.gz
sudo mkdir /usr/local/bin/julia110
sudo tar -xvf julia-1.10.2.linux-aarch64.tar -C /usr/local/bin/julia110
Change /home/parallels for where yours is
ln -s /usr/local/bin/julia110/julia-1.10.2/bin/julia /home/parallels/miniforge3/envs/u31011/bin/julia110
julia110
using Pkg
Pkg.add(“IJulia”)
exit()
In your chosen environment folder structure:
julia110 -e ’using Pkg;Pkg.generate(“learn”)
cd learn
julia110 –project=.
add environment specific Julia packages
From https://nodes.org/en/downloads/current downloaded Linux binaries ARMv8
sudo mkdir /usr/local/bin/node
sudo tar -xvf node-v16.15.1-linux-arm64.tar.xz -C /usr/local/bin/node
Extract files from node-v16.15.1-linux-arm64.tar.xz to /home/parallels/node-v16.8.0
ln -s /usr/local/bin/node/node-v16.15.1-linux-arm64/bin/node /home/parallels/miniforge3/envs/u3105/bin/node
R
install.packages(‘IRkernel’)
Selected Bristol mirror
install.packages(‘plotly’)
IRkernel::installspec()
quit()
pip install octave-kernel
sudo apt-get install octave
pip install gnuplot_kernel
python -m gnuplot_kernel install –user
jupyter-lab build
jupyter labextension list
jupyter kernelspec list
jupyter nbextension list
jupyter-lab Verify working with test notebook Then shutdown
sudo apt install fortran-language-server
From quarto.org download Quarto CLI amd64 package
From code.visualstudio.com/download download 64 bit .deb package (arm64 if on Apple Silicon)
sudo apt install ./code_1.68.1…
code
Install Python, Julia, Fortran Xavier Hahn, Fortan IntelliSense, Fortran Breakpoint Support ekibun LaTex Workshop, Quarto,
In the relevant extension settings add the path to the language servers
Julia: Executable Path /usr/local/bin/julia18
Fortran-ls: Executable Path /usr/local/bin/fortls
From quarto.org download and install the program to install the Quarto CLI
Here are the commands required to reproduce the environment for running solutions on a Raspberry Pi Single Board Computer
The editor and language options available are:
VS Code
Python, Julia, R, Wolfram
Jupyter Lab
Python, Julia, R, Wolfram, Octave SciLab
Pluto notebook
Julia
Octave
Octave
wxMaxima
Maxima
These commands were entered on Raspberry Pi OS Buster 64bit on a 4GB Raspberry Pi
From https://downloads.raspberrypi.org/raspios_arm64/images/raspios_arm64-2021-05-28/ downloaded 2021-05-07-raspios-buster-arm64.zip
Flashed to 32GB sd card with Balena Etcher
Booted on RPI4
Tick use English language Next
New password Next
Set Up Screen tick this screen shows a black border Next
Select wifi network Skip (cabled)
Update software Skip
Setup Complete Restart
Raspberry > Preferences > Raspberry Pi Configuration> Interfaces enable SSH and VNC
In terminal
sudo apt-get update
sudo apt-get full-upgrade
sudo reboot
mkdir Developer
sudo apt-get update
sudo apt-get install wolfram-engine
From https://github.com/conda-forge/miniforge downloaded Miniforge3-Linux-aarch64
In terminal in Downaloads bash Miniforge3-Linux-aarch64.sh
Chose to Initialise miniforge3
Restart Terminal
conda create -n rp395 python=3.9.5
conda activate rp395
which python shows /home/pi/miniforge3/envs/rp395/bin/python
python -V shows Python 3.9.5
which pip shows /home/pi/miniforge3/envs/rp395/bin/pip
pip install jupyterlab
conda install -c conda-forge vtk
ONE AT A TIME if crashes
pip install numpy sympy matplotlib pandas plotly bokeh scipy seaborn statsmodels octave-kernel ipympl ipyvtklink vispy jupyter_rfb vpython pyvista QtPy scilab-kernel
pip install watermark ipywidgets
sudo apt-get install octave
sudo apt-get install scilab
pip install gnuplot_kernel
python -m gnuplot_kernel install – -user
From julialang.org/downloads downloaded 64bit AArch64 of v1.6.2
Unzipped tar to /home/pi/julia-1.6.2
ln -s /home/pi/julia-1.6.2/bin/julia /home/pi/miniforge3/envs/rp395/bin/julia
julia
using Pkg
Pkg.add(“IJulia”)
Pkg.add(“Plots”)
Pkg.add(“DifferentialEquations”)
Pkg.add(“StaticArrays”)
Pkg.add(“BoundaryValueDiffEq”)
Pkg.add(“OrdinaryDiffEq”)
Pkg.add(“Sundials”)
Pkg.add(“SciMLBase”)
Pkg.add(“Plotly”)
Pkg.add(“PlotlyBase”)
exit()
From https://nodes.org/en/downloads/current downloaded Linux binaries ARMv8
Extract files from node-v16.8.0-Linux-arm64.tar.xz to /home/pi/node-v16.8.0
ln -s /home/pi/node-v16.8/bin/node /home/pi/miniforge3/envs/rp395/bin/node
From github.com/WolframResearch/WolframLanguageForJupyter.git downloaded WolframLanguageForJupyter-master.zip
Unzipped to home/pi/wolfram
In p395 environment in Wolfram directory created
./configure-jupyter.wls add
sudo apt-get purge dillo
sudo apt install r-base r-base-core r-base-dev
R
install.packages(‘IRkernel’)
yes
yes
IRkernel::installspec()
quit()
n
sudo apt install code
code
Add Python, Julia, REditor support extensions
jupyter-lab build
jupyter labextension list
jupyter kernelspec list
jupyter nbextension list
jupyter-lab Verify working with test notebook Then shutdown
jupyter notebook –generate-config
jupyter notebook password
In rp395 Julia add Pluto, import Pluto, Pluto.run(host=“=0.0.0.0”)